
System-level Synthesis using Re-programmable Components

Rajesh K. Gupta Giovanni De Micheli

Center for Integrated Systems
Stanford University, Stanford, CA 94305.

Abstract

We formulate the synthesis problem of complex behavioral de-
scriptions with performance constraints as a hardware-software
co-design problem. The target system architecture consists of a
software component as a program running on a re-programmable
processor assisted by application-specific hardware components.
System synthesis is performed by first partitioning the input sys-
tem description into hardware and software portions and then by
implementing each of them separately. The synthesis of dedicated
hardware is then achieved by means of hardware synthesis tools
[1], while the software component is generated using software
compiling techniques. We consider the problem of identifying po-
tential hardware and software components of a system described
in a high-level modeling language and we present a partitioning
procedure. We then describe the results of partitioning a network
coprocessor.

1 Introduction

Existing high-level synthesis techniques attempt to generate a
purely hardware implementation of a system design either as
a single chip or as an interconnection of multiple chips, each
of which is individually synthesized [1] [2] [3] [4]. A com-
mon objection to such an approach to system design is the cost-
effectiveness of anapplication-specifichardware implementation
versus a corresponding software solution usingre-programmable
components, such as off-the-shelf microprocessors. It is often
the case that system design requires amixedimplementation that
blends application-specific (ASIC) chips with processors, mem-
ory and other special purpose modules. Important examples are
embedded controllers and telecommunication systems.

Indeed, most digital functions can be implemented by software
programs. The major reason for building dedicated ASIC hard-
ware is the satisfaction of performance constraints. These perfor-
mance constraints can be on the overall time (latency) to perform
a given task, a subtask and/or on the input/output data rates. For
example, consider design of a data encryption/protocol controller
chip. As shown in Figure 1, the DES transmitter takes data from
memory using a DMA controller, assembles the frame for trans-
mission, encrypts the data after it receives the key and transmits
the encrypted data. The encryption algorithm is a long, iterative
process of rotations and bit permutations. Generally it is more
cost-effective to implement bit-oriented operations in dedicated
hardware whereas it may take too long to execute as a sequence
of instructions on most processors. On the other hand, operations
related to memory access and frame assembly are typically un-
constrained such that they can be relegated to a program running
on an already available general-purpose microprocessor, thus sub-
stantially reducing the amount of dedicated hardware required for
system implementation. Therefore, while a complete application-
specific hardware implementation of the controller may be too

assemble frame

receive data from memory using DMA

receive encryption key

encrypt data max time
constraint

REPROGRAMMABLE

SOFTWARE

DEDICATED

HARDWARE

transmit data

Figure 1: Example of A Mixed System Implementation

expensive in terms of hardware size and design time, an imple-
mentation which utilizes a re-programmable component may sat-
isfy the performance requirements and at the same time provide
the ease and flexibility of reprogramming in software.

The problem of hardware-software co-design is fairly complex,
and todate there are no available CAD tools to support it. This
paper addresses the co-design issue by formulating it as a par-
titioning problem into application-specific and re-programmable
components. We can view it as an extension of high-level synthe-
sis techniques to systems with generic re-programmable resources.
Nevertheless, the overall problem is much more complex and it
involves, among others, solving the following subproblems:

1. Modeling the system functionality and performance con-
straints.

2. Determination of the boundary of tasks between ASIC and
re-programmable components.

3. Specification and synthesis of the hardware-software inter-
face and related synchronization mechanisms.

4. Implementation of software routines to provide real-time re-
sponse to concurrently executing hardware modules.

Due to limited space availability in this paper, we touch briefly
on the modeling problem and implementation issues in order to
describe our approach to obtaining feasible partitions. We con-
sider an approach to hardware-software partitioning based on dis-
tribution of unknown delay operations in the system model. This,
by no means, is the only way to obtain such a partition, but it
allows us to delve into the problem and experiment with existing
system designs. For more details on this subject and the related
issues mentioned above the reader is referred to [5]. Some po-
tential applications of the techniques presented in this paper are:

Design of cost-effective systems:The overallcostof a sys-
tem implementation can be reduced by the ability to use already
available general purpose re-programmable components while re-
ducing the number of application-specific components.

loop body

op op

wrrd

loop

op

ipc

Figure 2: Example of A System Graph Model

Rapid prototyping of complex system designs:A complete
hardware prototype of a complex system is often large. A feasible
partition that shifts the non performance-critical tasks to software
programs can be used to quickly evaluate the design.

Speedup of hardware emulation software:During their de-
velopment phase, many system designs are often modeled and
emulated in software for testing purposes. Such an emulation can
be assisted by dedicated hardware components which provides a
speedup on the emulation time.

Rapid prototyping and hardware emulation are two opposite
ends of the system synthesis objective. Rapid prototyping at-
tempts to minimize the application-specific component to reduce
design time whereas hardware emulation attempts to maximize
the application-specific component in order to realize maximum
speed-up.

2 System Model

We model system behavior using a graph representation based
on data-flow graphs. The system graph model,G(V; E), con-
sists of a set of vertices as operations,V , and a set of edges,E,
which represent either data or sequencing dependency between
vertices. Vertices correspond to operations some of which may
have data-dependent delays. Data-dependent and synchronization
operations introduce uncertainty over the precise delay and order
of operations in the system model and thus make its execution
non-deterministic[6]. We refer to a vertex with data-dependent
delay as apoint of non-determinismin the system graph model.
We discuss the property of non-determinism and its effects in Sec-
tion 3.2. Overall, the system graph model consists of concurrent
data-flow sections which are ordered by control flow. The data-
flow sections preserve the parallelism while control constructs like
conditionals and loops obviate the need for a separate description
of the system control flow. The control operations like loops and
conditionals are specified as separate subgraphs through the use
of hierarchy. Figure 2 shows an example of a graph model.

Timing constraints are of two types: (a) minimum/maximum
timing separation between pairs of operations and (b) system
input-outputs rate constraints. Timing constraints between op-
erations are indicated by tagging the corresponding operations.
The input (output) rate constraints refer to the rates at which the
data is required to be consumed (produced). The rate constraints
refer to time constraints on multiple executions of the same input
or output operation. The system model has no notion of how the
actual data transfer takes place in the final system implementation,
for example, it may be a synchronous or an asynchronous trans-
fer which may or may not be blocking. The final determination
of data-transfer protocol takes place when considering operation
partitioning between hardware and software and the associated
implementation overheads.

The system graph model can be compiled from most hardware
description languages. We use theHardwareC [7] language that
has a C-like syntax and supports timing and resource constraints.

ASIC

MEMORY

ML Program

User Data

Interface Buffer

Application-Specific

Components
Re-programmable

Component

ASIC

PROCESSOR
MICRO-

Figure 3: Target System Architecture

The input/output rate constraints are specified as additional at-
tributes to the corresponding input/output statements.

3 Partitioning of a System Model

Any partition of the system model is also a system graph model
and hence it may contain concurrent sets of operations. While
such concurrency among operations is natural to any hardware
implementation, the corresponding program implementations can
execute operations only serially. Thus a hardware-software sys-
tem may require multiple re-programmable components in order
to preserve concurrency inherent (or externally imposed) on the
system model. System designs with multiple processors are com-
plicated by the need for a coherent memory management among
various processors. In this paper, we make a simplifying as-
sumption that the target system design consists of only one re-
programmable component and develop our system synthesis ap-
proach based on the target architecture shown in Figure 3. If
needed, the hardware component of system design may be parti-
tioned further based on the area, pin-out and latency constraints
using thehomogenouspartitioning approaches described in [8].
The resulting hardware modules are connected to the system ad-
dress and data busses. The memory used for program and data-
storage may be on-board the re-programmable component. How-
ever, the interface buffer memory needs to be accessible to the
hardware modules directly. Because of the complexities associ-
ated with modeling hierarchical memory design, we consider the
case where all memory accesses are to a single level memory,
i.e., outside the re-programmable component.

3.1 Feasibility

A system partition into an application-specific and a re-
programmable component is consideredfeasible when it imple-
ments the original specifications and it satisfies the performance
and interface constraints. We assume that the hardware and soft-
ware compilation, done using standard tools, preserves the func-
tionality. We, therefore, concentrate on constraints. Constraints
can be on sizes of hardware and software components, timing
constraints between operations and constraints related data rates
of system inputs and outputs. Satisfaction of timing constraints
is complicated by the presence of non-determinism in the sys-
tem model. In presence of uniform rates of data transfer, we use
in our approach the constraint analysis and synthesis technique
[9], that guarantees that either the synthesized circuit satisfies
the min/max timing constraints for any value of the delay of the
non-deterministic operations, or no solution exists. Since these

techniques have already been described elsewhere [10], we refer
the reader to the original papers.

As mentioned earlier, when partitioning system model into
hardware and software components the data rates may not
be uniform across models. The discrepancy in data-rates is
caused by the fact that the application-specific hardware and re-
programmable components may be operated off different clocks
and the system execution model supports multi-rate executions
that makes it possible to produce data at a rate faster than it can be
consumed by the software component when using a using a finite
sized buffer. In presence of multi-rate data transfers, feasibility of
hardware/software partition is determined by the fact that for all
data transfers across a partition, the production and consumption
data rates are compatible with a finite and size-constrained inter-
face buffer. That is, for any data transfer across partition, data
consumption rate is at least as high as the data production rate.
The size of the actual buffer needed may then be determined by
using the scheme proposed in [11]. In addition, since the target ar-
chitecture as shown in Figure 3 contains a single system bus over
which data transfer to and from the re-programmable component
takes place. Therefore, the net effect of all data-transfers over
this bus should not exceed the pre-specified system bus band-
width. Available bus bandwidth is a function of bus/processor
clock rate and memory latency.

The partition problem of hardware and software components
requires first finding a feasible partition. Among data-rate feasible
solutions, acost functionof overall hardware size, program and
data storage cost, bus bandwidth and synchronization overhead
cost is used to determine the quality of a solution.

3.2 Partitioning

We now consider approaches to system partitioning in the order of
increasing complexity of the system model. Let us first consider
a system graph model with no unbounded delay operations and
with non-multirate execution model. We then look for a partition
of a system model driven by satisfaction of the imposed timing
constraints. Consider an algorithm that is summarized as follows:
starting with an initial solution with all operations in hardware,
we select operations for move into the software component based
on a cost criterion of communication overheads. Movement of
operations to software requires a serialization of operations in
accordance with the partial order imposed by the system model.
With this serialization and analysis of the corresponding assembly
code for a given re-programmable processor, we derive delays
through the software component. The movement of operations is
then constrained by satisfaction of the imposed timing constraints.
Such a partitioning algorithm would strive to achieve maximal
number of operations in the software component.

Effect of non-determinism on system partitioning

Non-determinism in our system models is caused either by
externalsynchronization operations or byinternal data-dependent
delay operations, like conditionals and data-dependent loops. In
presence of unbounded delay operations, we can still apply the al-
gorithm described before. Note that unbounded delay operations
can not be subject to any maximum timing constraints. There-
fore, we transfer all such operations into the software component
and then identify deterministic delay operations for move into the
software component such that all timing constraints are satisfied.

However, in systems withmulti-rate execution model, the
data-dependent delay operations makes it difficult to predict ac-
tual data-rates of production and consumption across partitions.
Further, non-deterministic delays in the system model makes it
difficult to statically schedule operations in any implementation
of the system design. When considering a mixed implementation
of the system design, it is possible to use dynamic scheduling of
operations either or in both hardware and software components.

Dynamic scheduling of operations in hardware or software re-
quires both area and time overheads that may sometimes render
a hardware-software co-design solution difficult or even infeasi-
ble. On the other hand, use of static scheduling requires a careful
analysis of data-transfer rates across hardware and software por-
tions in order to make sure that possible data-rates can indeed be
supported by the interface implementation.

Due to non-determinism in system models, the most general
implementation of hardware and software components requires
a control generation scheme that supports data-drivendynamic
scheduling of various operations. Since the software component
is implemented on a processor that physically supports only single
thread of control, realization of concurrency in software entails
both storage area and execution time overheads. On the other
hand, in absence of any point of non-determinism from the soft-
ware, all the operations in the software can be scheduledstati-
cally. However, such a software model may be too restrictive by
requiring the control flow to be entirely in hardware. In our model
of software implementation, we take an intermediate approach to
scheduling of various operations as described below. First, we
make following assumptions about the implementation model:

� The system has an application-specific hardware component
that handles all external synchronization operations. (exter-
nal non-determinism points).

� All the data dependent delay operations (internal non-
determinism points) are implemented by software fragments
running on re-programmable components.

� For the sake of simplicity and explanation within the scope
of this paper, we assume that the system model contains no
nested unbounded delay operations, such as a nested loop.
However, the software synthesis technique described here
can be expanded to include nested unbounded operations[5].

The software component is thought to consist of a set of con-
currently executing routines, calledthreads. A thread consists
of a linearly ordered set of operations. The serialization of the
operations is imposed by the control flow in the corresponding
graph model. Concurrent sets of operations are implemented
as separate threads in order to preserve concurrency specified
in the system graph model. All the threads begin with a point
of non-determinism and as such these are scheduled dynamically.
However, within each thread of execution all operations are stati-
cally scheduled. As an example, data-dependent loops in software
are implemented as a single thread with a data-dependent repeat
count. In this way, we take an intermediate approach between
dynamic and static scheduling of software operations. Instead
of scheduling every operation dynamically, we create statically
known deterministic threads of execution which are scheduled in a
cyclo-staticmanner depending upon availability of data. Thus, an
individual operation in software has a fixed schedule in its thread,
however, the time and the number of times the thread may be in-
voked is data-driven. Therefore, for a given re-programmable
processor, the latency,�, of each thread is known statically. For
a given data-input operation in a thread,i, with latency,�i, the
data consumption rate,�i is bounded as: 1

�max
� �i � 1

�i

where�max refers to the latency of the longest thread. It is as-
sumed that the latency includes any synchronization overhead that
may be required to implement multiple threads of execution on a
single-thread re-programmable processor. The lower bound on� i
is obtained by implementing a software scheduling scheme that
reschedules a repeating thread for execution at the end of every
iteration.

The system partitioning across hardware and software compo-
nents is performed by decoupling the external and internal points
of non-determinism in the system model. It is assumed that for
all external points of non-determinism, the corresponding data-
rates are externally specified. Thus, through this decoupling we
are able to determine all the data-rates for all the inputs to the
re-programmable component. The production data-rates of the

Input: System graph model,G = (V , E)
Output: Partitioned system graph model,V = VH [VS
partition(V):

V = V d [V n /* identify points of non-determinism */
Vn = V ne [V ni /* external vs internal non-determinism */
VH = f V ne ; V d g /* the initial hardware component */
VS = f Vni g /* the initial software component */
create software threads (V ni) /* createjV ni j routines */
compute data rates (processor)
if not(feasible(VH; VS)) exit /* No feasible solution exists */
fmin = f(VH; VS) /* initialize cost function */
repeat

foreachvdi 2 V d \ VH /* select a deterministic delay operation */
move(vdi) /* recursively move operations to sw */

until no improvement in cost function
return (VH; VS)

move(vdi): /* considers a vertex for move fromV H to VS */

if feasible(VH � f vdig ; VS + f vdig)
if f(VH �f vdig ; VS + f vdig) < fmin

VH = VH - f vdi g /* move this operation to sw */
VS = VS + f vdi g
fmin = f(VH,VS)
update software threads
update data rates (processor)
foreachvdj 2 succ(vdi) \ VH /* identify successor for move */

move(vdj)
return

Figure 4: Partitioning Algorithm

re-programmable component are determined by the software syn-
chronization scheme used. We consider the issue of software
implementation in Section 4.2.

The pseudo-code in Figure 4 outlines the partitioning algo-
rithm. A system graph model,G = (V ; E), is created by
compiling theHardwareC description. From externally speci-
fied data rates we compute data rates for data flow edges in the
system graph model. The vertex set,V , consists of two sets of
vertices,V =fV d; Vng, whereV d denotes the set of opera-
tions whose delay is bounded and known at compile time, and
V n refers to non-deterministic delay vertices. With a data-rate
annotated system model as an input, we first isolate its points
of non-determinism,V n, into two groups: V ne , those caused
by external input/output operations, andV ni , those caused by
internal data-dependent operations. The external points of non-
determinism,V ne , are solely assigned to the hardware while the
internal points of non-determinism,V ni , are assigned solely to
the software component. With this initial partition we determine
the feasibility of data transfers across the partition. If this initial
partition is not feasible, then the algorithm fails since no feasible
partition existsunder the proposed hardware-software interface
and software implementation scheme. Alternative approaches to
system partitioning when partitioning of non-deterministic opera-
tions fails are discussed in [5]. If the initial partition is feasible,
then it is refined by migrating operations from hardware to soft-
ware (i.e., moving vertices fromVH to VS) in the search for a
lower cost feasible partition.

Associated with each internal point of non-determinism (e.g.
data-dependent loop bodies, conditional case bodies etc.) we cre-
ate a program fragment or athread of execution. Each thread
of execution corresponds to a software routine by creating cor-
responding C code fromHardwareC description. For various
threads of execution in the software component, we derive la-
tency and static storage measures by analyzing the corresponding
assembly code. The assembly code is obtained by compiling the
corresponding C descriptions. We have considered todate two
off-the-shelf components, the R3000 and the 8086, and used ex-
isting compilers to evaluate the performance of the correspond-

HardwareC
description

Machine-
level
Code

ASIC HW

Hercules (Behavioral Optimizations)

HEBE + CERES

(Structual Synthesis)

HW Generation

S
W

 G
en

er
at

io
n

HWSW

Mixed System Implementation

C Program

compiler

System
Graph
Model

Figure 5: Generation of Hardware and Software Components

ing implementation. The algorithm presented in Figure 4 uses
a cost function, f = f(size(VH), size(VS), Synchcost(VH ; VS),P

i nterface
data ra t es) that is a weighted sum of its arguments.

The algorithm uses a greedy approach to selection of vertices for
move intoVS . There is no backtracking since a vertex moved into
VS stays in that set throughout rest of the algorithm. Therefore,
the resulting partition is a local optimum with respect single ver-
tex moves. The overall complexity of the algorithm is quadratic
in the number of vertices.

A partition of the system model is indicated by tagging its
vertices by either hardware or software. Individual hardware and
software components and interface circuitry are created from a
partitioned model as described in the following section.

4 Implementation of System Components

Figure 5 shows the methodology for generation of individual
hardware and software components starting from a functional de-
scription in HardwareC. The system synthesis is performed by
a program called Vulcan-II which invokes appropriate hardware
and software synthesis tools to generate the final system design.
Hardware synthesis is done using programHebe[1] and software
component is generated using available C-compiler for the target
processor. Synthesis of interface logic may also be obtained using
techniques indicated in [12] [13].

4.1 Interface

As mentioned earlier, the hardware-software interface depends
upon the corresponding data transfer requirements imposed on
the system model. In the case of known data-rates where (non-
blocking) synchronous data transfers are possible, the interface
contains an interface buffer memory for data transfer. Different
policy-of-use for the interface buffer is adopted when transferring
data or control information across the partition. Therefore, the
interface buffer consists of two parts: a data-transfer buffer and
a control-transfer buffer (Figure 6). The data-transfer buffer uses
an associative memory withstatically determinedtags while the
control-transfer buffer uses a FIFO policy-of-use in order to dy-
namically schedule multiple threads of execution in the software.
Associated with each data-transfer we assign a unique tag which
consists of two parts, software thread id and the specific data-
transfer id. Since all the threads and all input/output operations
are known, the tags are determined statically. In addition, the

TAG RQ

 MW

DW

d0 d1 d2 d3

DATADIRECT-MAPPED BUFFER FOR
DATA TRANSFER:

1. Tags determined statically

2. RQ used for demand scheduling
of SW
3. MW/DW ratio to support
multiple HW executions

FIFO BUFFER FOR DYNAMIC
CONTROL FLOW:

1. Control flow modifications from:

a. Memory Read or
b. Interrupt driven or
c. A dedicated Input Port

INTERFACE BUFFER POLICY-OF-USE

Figure 6: Hardware and Software Interface Architecture

receive compute

initial
compute

Hit
Miss

detach

i:= nextp

Miss

Hit
ready(i)

ENQUEUE(i) DEQUEUEread nextp -nextp

wait(i) ready(i)

PROCESS MODEL TASK SWITCH MODEL INTERFACE BUFFER MODEL

+data(i)

miss +data(i)

hit

Control FIFO:

DM Buffer (i)

i refers to routine associated with point of non-determinism i

(a) (b) (c)

RQ(i)=1 RQ(i)=0

Figure 7: Hardware and Software Interface Architecture

data-buffer contains a request flag (RQ bit) associated with each
tag to facilitate demand scheduling of various threads in software.
Figure 7 explains themodus operandiof data transfer across a
hardware/software partition. In the software, a thread of execu-
tion is in the compute state as long as it has all the available
data [Figure 7(a)]. In case of a miss on a data, the corresponding
RQ bit is raised and the thread is detached [Figure 7(c)]. The
processor then selects a new thread of execution from the control
FIFO [Figure 7(b)]. In case of data arrival to the interface buffer,
if the corresponding RQ bit is on, its tag is put into the control
FIFO [Figure 7(c)].

4.2 Hardware and Software Components

Application-specific hardware synthesis under resource and tim-
ing constraints has been addressed in detail elsewhere [10].
Therefore, in this section we focus on the problem of synthe-
sis of the software component of system design. As mentioned
earlier, we essentially have a set of program fragments each ini-
tiated by a point of non-determinism. The problem of concurrent
multi-thread implementation is well known[14]. In general, mul-
tiple program threads may be implemented as subroutines oper-
ating under a global task scheduler. However, subroutine calling
adds overheads which can be reduced by putting all the program
fragments at the same level of execution. Such an alternative
is provided by implementing different threads as coroutines [15].
In this case, routines maintain a co-operative rather than a hierar-
chical relationship by keeping all individual data as local storage.
The coroutines maintain a local state andwillingly relinquish con-
trol of the processor at exception conditions which may be caused
by unavailability of data or an interrupt. The code for a corou-
tine based scheduler comes to 34 instructions taking about 100

Host
CPU

Memory

System
Bus

Local Memory

Micro-
Processor

Local Bus

DMA-RCVD

RCVD-FRAME RCVD-BUFFER RCVD-BIT

DMA-XMIT XMIT-FRAME XMIT-BIT

ENQUEUE EXEC-UNIT

RXE

RXD

TXD

TXE

CRS

CDT

Network Coprocessor

Transmit Unit

Receive Unit

Execute Unit

Figure 8: Network Coprocessor Block Diagram

bytes in an assembly that provides register-memory operands (like
8086). The coroutine switch takes 364 cycles when implemented
for 8086 processor. By contrast, implementation of a global task
scheduler using subroutines takes 728 clock cycles for the 8086
processor [5].

Since the processor is completely dedicated to the implemen-
tation of the system model and all software tasks are known stat-
ically, we can use a simpler and more relevant scheme to imple-
ment the software component. In this approach, we merge differ-
ent routines and describe all operations in a single routine using
a method of description by cases [16]. This scheme is simpler
than the coroutine scheme presented above. Here we construct
a single program which has a unique state assignment for each
point of non-determinism. A global state register is used to store
the state of execution of a thread. Transitions between states are
determined by the requirement on interrupt latency for blocking
transfers and scheduling of different points of non-determinism
based on data received.

This method is restrictive since it precludes use of nested rou-
tines and requires description as a single switch statement, which
in cases of particularly large software descriptions, may be too
cumbersome. Overhead due to state save and restore amounts
to 85 clock cycles for every point of non-determinism when im-
plemented on a 8086 processor. Consequently, this scheme en-
tails smaller overheads when compared to the general coroutine
scheme described earlier.

5 Example: Network Coprocessor

As an example of hardware-software system implementation, we
describe implementation of a network coprocessor for communi-
cation via an ethernet link. The coprocessor manages the pro-
cesses of transmitting and receiving data frames over a network
under CSMA/CD protocol. The purpose of this coprocessor is
to off-load the host CPU from managing communication activi-
ties. The coprocessor provides following functions: Data Fram-
ing and De-Framing, Network/Link Operation, Address sensing,
Error Detection, Data Encoding, and Memory Access. In addi-
tion, the coprocessor provides a repertoire of eight instructions
that let the host CPU program the machine for specific operations
(transmit some data from memory, for example). For details on
coprocessor operation, the reader is referred to [5]. The network
coprocessor block diagram shown in Figure 8 is modeled on the
target architecture described in earlier. The important rate and
timing constraints on the coprocessor design are: the maximum

Unit Process Area Delay
Transmission Unit xmit bit 271 14.31 ns

xmit frame 3183 37.15 ns
DMA xmit 2560 45.06 ns

Reception Unit DMA rcvd 400 27.51 ns
rcvd bit 282 12.30 ns
rcvd buffer 127 22.09 ns
rcvd frame 1571 38.12 ns

Coprocessor 8394 45.06 ns

Table 1: Network Coprocessor Application-Specific Hardware
Component using LSI LCA10K Gates

Target Processor Pgm & Data Size Max Delay
R3000, 10 MHz 8572 bytes 56 cycles, 5.6�s
8086, 10 MHz 1295 bytes 115 cycles, 11.5�s

Table 2: Network Coprocessor Software Component

input/output bit rate is 10 Mb/sec; maximum propagation delay
is 46.4�s; maximum jam time is 4.8�s and the minimum inter-
frame spacing is 67.2�s.

The ethernet coprocessor is modularly described as a set of 13
concurrently executing processes which interact with each other
by means of 24 send and 40 receive operations. The totalHard-
wareCdescription consists of 1036 lines of code. A mixed im-
plementation following the approach outlined in Section 3 was
attempted by decoupling the points of non-determinism in the sys-
tem model. Table 1 shows the results of synthesis of application-
specific hardware component of the system implementations that
was synthesized in the Olympus Synthesis System and mapped
using LSI logic 10K library of gates. The software component
is implemented in a single program containing case switches cor-
responding to 17 synchronization points, i.e., internal points of
non-determinism as described in Section 4.2. With reference to
Figure 8 the software component consists of the execution unit
and portions of theDMArcvd and DMAxmit blocks. The re-
ception and transmission of data on the ethernet line is handled by
the application-specific hardware running at 20 MHz. The total
interface buffer cost is 314 bits of memory elements. Table 2 lists
statistics on the code generated by a commercial compiler for the
ethernet software component implementation.

By contrast, a purely hardware implementation of the Net-
work Coprocessor requires 10882 gates (using LSI 10K library).
With a maximum limit of 10000 gates on a single chip, a pure
hardware implementation would requiretwo application-specific
chips. Thus, through the use of system partitioning into hardware
and software components we are able to achieve a 20 MHz co-
processor operation while decreasing the overall hardware cost to
only one application-specific chip (or 23% in terms of gate count).
The reprogrammability of software components makes it possi-
ble to increase the coprocessor functionality, for example addition
of self-test and diagnostic features, with little or no increase in
dedicated hardware required.

6 Conclusion

We have presented a scheme for performing constraint-driven
system-level partitioning into hardware and software components
using a system model that supports non-deterministic delay opera-
tions and timing constraints. This partitioning algorithm is driven
by the satisfaction of data-rate constraints. A feasible solution
to the data-rate constraints is obtained by identification and sep-

aration of internal and external points of non-determinism in the
system model.

Using the partitioning approach presented we were able to par-
tition the design of an Ethernet based network coprocessor into
feasible hardware and software components. The mixed imple-
mentation requires 23% less dedicated hardware than a purely
application-specific implementation. More importantly, repro-
grammability of the software component makes it possible to ex-
tend the coprocessor functionality without the need of additional
application-specific hardware modules.

Currently we do not consider memory hierarchy in our model
of system design. Most modern processors come with a certain
amount of on-chip cache memory that can be used to speed up the
response time of the software component. However, this is not an
inherent limitation of our approach, and future extensions include
modeling of the effect of cache misses on software performance.

The topic of system synthesis using hardware-software parti-
tioning is explorative in nature, because of its novelty. The limi-
tation of the technique presented here would be related to the lack
of a feasible partition on some system designs. In addition, the
assumptions on hardware, software implementation model and in-
terface scheme influence the partition. As a result, the partitioning
results may not be as general to all system designs but specific to
the assumptions made for example to the type of re-programmable
processor being considered.

7 Acknowledgements

The authors would like to thank Claudionor Coelho, Jr. for help-
ful discussions. This research was sponsored by NSF-ARPA,
under grant No. MIP 8719546 and, by DEC jointly with NSF,
under a PYI Award program, and by a fellowship provided by
Philips/Signetics. We also acknowledge support from ARPA, un-
der contract No. J-FBI-89-101.

References
[1] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis System for

Digital Design,” IEEE Design and Test Magazine, pp. 37–53, Oct. 1990.

[2] J. Rabaey, H. D. Man, andet. al., Cathedral II: A Synthesis System for Multiprocessor
DSP Systems, inSilicon Compilation, D. Gajski, editor, pp. 311–360. Addison Wesley,
1988.

[3] D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. Rajan, and R. Blackburn,Algorithmic and
Register-Transfer Level: The System Architect’s Workbench. Kluwer Academic Publishers,
1990.

[4] R. Camposano and W. Rosenstiel, “Synthesizing Circuits from Behavioral Descriptions,”
IEEE Transactions on CAD/ICAS, vol. 8, no. 2, pp. 171–180, Feb. 1989.

[5] R. K. Gupta and G. D. Micheli, “System Synthesis via Hardware-Software Co-design,” CSL
Technical Report CSL-TR, Stanford University, 1992.

[6] D. Bustard, J. Elder, and J. Welsh,Concurrent Program Structures, p. 3. Prentice Hall,
1988.

[7] D. Ku and G. D. Micheli, “HardwareC - A Language for Hardware Design (version 2.0),”
CSL Technical Report CSL-TR-90-419, Stanford University, Apr. 1990.

[8] R. Gupta and G. D. Micheli, “Partitioning of Functional Models of Synchronous Digital
Systems,” inProceedings of the International Conference on Computer-Aided Design, (Santa
Clara), pp. 216–219, Nov. 1990.

[9] D. Ku and G. D. Micheli, “Relative Scheduling under Timing Constraints,” inProceedings

of the27thDesign Automation Conference, (Orlando), June 1990.

[10] D. Ku and G. D. Micheli, “Optimal synthesis of control logic from behavioral specifications,”
VLSI Integration Journal, vol. 3, no. 10, pp. 271–298, Feb. 1990.

[11] T. Amon and G. Borriello, “Sizing Synchronization Queues: A Case Study in Higher Level

Synthesis,” inProceedings of the28thDesign Automation Conference, June 1991.

[12] T. H. Meng, Synchronization Design for Digital Systems, ch. Synthesis of Self-Timed Cir-
cuits, pp. 23–63. Kluwer Academic Publishers, 1991.

[13] G. Borriello and R. Katz, “Synthesis and Optimization of Interface Transducer Logic,” in
Proceedings of the IEEE Transactions on CAD/ICAS, Nov. 1987.

[14] G. R. Andrews and F. Schneider, “Concepts and Notations for Concurrent Programming,”
ACM Computing Surveys, vol. 15, no. 1, pp. 3–44, Mar. 1983.

[15] M. E. Conway, “Design of a Separate Transition-Diagram Compiler,”Comm. of the ACM,
vol. 6, pp. 396–408, 1963.

[16] P. J. H. King, “Decision Tables,”The Computer Journal, vol. 10, no. 2, Aug. 1967.

